Lesson 4 - From MSE to Cross Entropy & From Normal to He Initialization Why we switch for MNIST classification

Andrea Giardina contact@andreagiardina.com https://www.linkedin.com/in/agiardina

From Regression to Classification

- Previously, we treated MNIST as a regression-style problem and used MSE as loss.
- But MNIST is a multi-class classification task (10 digits).
- MSE can work, yet it does not model probabilities and may yield slower convergence.
- Cross Entropy directly compares predicted probabilities with true labels.
 - Penalizes confident wrong predictions strongly.
 - Matches the probabilistic modeling of softmax outputs.

Improving Weight Initialization

- Previously: weights drawn from a simple normal distribution.
- Risk: vanishing or exploding activations as depth increases.
- **He Initialization** (for ReLU-like activations):

$$W_{ij} \sim \mathcal{N}\left(0, \frac{2}{n_{\mathsf{in}}}\right)$$

- ullet Preserves activation variance layer-to-layer \Rightarrow more stable gradients.
- Practically: faster training and often higher accuracy.

The Goal: Multi-Class Classification (MNIST)

Our task is to classify images of handwritten digits (0-9).

- Input: An image (e.g., 28 × 28 pixels).
- Output: A probability distribution over 10 classes.

Network Output (Prediction):

- Class 0: 1%
- Class 1: 5%
- Class 2: 90%
- Class 3: 1%
- ...
- Class 9: 2%

Input Image ('2')

The Goal: Multi-Class Classification (MNIST)

Our task is to classify images of handwritten digits (0-9).

- **Input:** An image (e.g., 28 × 28 pixels).
- Output: A probability distribution over 10 classes.

Network Output (Prediction):

Class 0: 1%

Class 1: 5%

Class 2: 90%

• Class 3: 1%

...

Class 9: 2%

Question: How do we ensure the output is a valid probability distribution (all positive, sums to 1)? **Answer:** The **Softmax** function.

Input Image ('2')

The Output Layer: Softmax

The final layer of our network produces raw scores (logits), z_i , for each class i. Softmax converts these scores into probabilities, a_i .

Softmax Function

$$a_i = \operatorname{softmax}(z)_i = \frac{e^{z_i}}{\sum_{j=1}^C e^{z_j}}$$

Where C is the number of classes (10 for MNIST).

Properties:

- $a_i > 0$ (Exponential is always positive)
- $\sum_{i=1}^{C} a_i = 1$ (Normalized by the sum)

We will call the vector of predicted probabilities a (or \hat{y}).

The Target: One-Hot Encoding

We need to compare the network's probability output a with the true label y. We can't use the number '2'.

We represent the true label y as a "one-hot" vector.

One-Hot Encoding Example (Label = 2)

$$y = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]$$

Our Goal: Make the predicted distribution a as "close" as possible to the true distribution y.

- Prediction a: [0.01, 0.05, **0.90**, 0.01, ..., 0.02]
- Target y: [0, 0, 1, 0, ..., 0]

We need a **Loss Function** L(a, y) to measure this "distance".

A Possible Loss: Mean Squared Error (MSE)

A common loss function from regression is MSE. Why not use it here?

Mean Squared Error (MSE)

$$L_{MSE} = \sum_{i=1}^{C} (a_i - y_i)^2$$

(We can average over the batch, but let's look at one sample)

The Problem: The Gradient

- Backpropagation relies on the gradient: $\frac{\partial L}{\partial z_i}$.
- The gradient for MSE (combined with Softmax) includes the term $a_i(1-a_i)$.
- Scenario: Network is very wrong and very confident.
 - Target $y_i = 1$.
 - Prediction $a_i = 0.01$.
- The gradient term $a_i(1-a_i)\approx 0.01(0.99)\approx 0.01$.
- The gradient is tiny! This is the vanishing gradient problem.

A Possible Loss: Mean Squared Error (MSE)

A common loss function from regression is MSE. Why not use it here?

Mean Squared Error (MSE)

$$L_{MSE} = \sum_{i=1}^{C} (a_i - y_i)^2$$

(We can average over the batch, but let's look at one sample)

The Problem: The Gradient

- Backpropagation relies on the gradient: $\frac{\partial L}{\partial z_i}$.
- The gradient for MSE (combined with Softmax) includes the term $a_i(1-a_i)$.
- Scenario: Network is very wrong and very confident.
 - Target $y_i = 1$.
 - Prediction $a_i = 0.01$.
- The gradient term $a_i(1-a_i)\approx 0.01(0.99)\approx 0.01$.
- The gradient is tiny! This is the vanishing gradient problem.

Result: The network learns very slowly precisely when it is most wrong.

A Better Loss: Cross-Entropy (CE)

Cross-Entropy comes from information theory. It measures the "inefficiency" of using the predicted distribution a to represent y.

Categorical Cross-Entropy (CE)

$$L_{CE} = -\sum_{i=1}^{C} y_i \log(a_i)$$

For one-hot y:

- y = [0, 0, 1, 0, ...]
- Only the correct class term survives.

Simplified Loss

$$L_{CE} = -\log(a_c)$$

If $a_c \to 1$: $L \to 0$ (good). If $a_c \to 0$: $L \to \infty$ (bad).

Why CE is Better: The "Magic" Gradient

The gradient of CE+Softmax is very simple:

Gradient

$$\frac{\partial L_{CE}}{\partial z_i} = a_i - y_i$$

Just **Prediction - Target**. No vanishing term $a_i(1 - a_i)$.

Implementation: Forward Pass (NumPy)

From Logits to Loss

Let's assume we have a batch:

- Z: Logits from the last layer. Shape (N, C).
- Y_true: One-hot labels. Shape (N, C).
- N = batch size, C = number of classes.

Step 1: Softmax (Stable)

```
Z_stable = Z - np.max(Z, axis=1, keepdims=True)
exp_Z = np.exp(Z_stable)
A = exp_Z / np.sum(exp_Z, axis=1, keepdims=True)
```

Step 2: Cross-Entropy Loss

```
epsilon = 1e-9
log_probs = np.log(A + epsilon)
loss_samples = -np.sum(Y_true * log_probs, axis=1)
total_loss = np.mean(loss_samples)
```

Implementation: Backward Pass (NumPy)

The Gradient for Backpropagation

- Loss: $L = \frac{1}{N} \sum L_{\text{sample}}$
- Gradient: $\frac{\partial L}{\partial z_i} = \frac{1}{N}(a_i y_i)$

Gradient w.r.t. Logits (dZ)

Done! The complexity cancels out perfectly.

Summary

- CE measures distance between predicted (a) and true (y) distributions.
- Gradient: $\frac{\partial L}{\partial Z} = A Y$.
- ullet Avoids vanishing gradients o faster, stable training.

Why Do We Care About Initialization?

- Poor initialization can cause vanishing or exploding activations/gradients.
- Goal: keep the variance of signals roughly constant across layers (forward) and of gradients (backward).
- He (Kaiming) initialization is designed for ReLU-like activations (ReLU, LeakyReLU, ELU, GELU).
- Intuition: ReLU "drops" about half the inputs $(\mathbb{P}[z>0]\approx 0.5 \text{ if } z \text{ is symmetric})$, so we compensate in the weights' variance.

What is Variance?

- Goal: measure how much values vary around their mean (spread).
- **Population variance:** for a random variable X with mean μ ,

$$\operatorname{Var}(X) = \mathbb{E}[(X - \mu)^2].$$

• Sample variance (unbiased): for data x_1, \ldots, x_n with sample mean \bar{x} ,

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2.$$

- **Units:** squared units of the data (e.g., if x is in volts, variance is in volts²).
- Standard deviation: $\sigma = \sqrt{\operatorname{Var}(X)}$ (same units as data).
- Key properties: $Var(X) \ge 0$; $Var(aX + b) = a^2 Var(X)$; Var(X) = 0 iff X is constant.
- Why we care (initialization): keeping variance stable across layers helps avoid vanishing/exploding activations and gradients.

Variance Propagation (Forward Pass)

Consider a linear layer: z = Wa, where $a \in \mathbb{R}^{\mathsf{fan_in}}$ and $W \in \mathbb{R}^{\mathsf{fan_out} \times \mathsf{fan_in}}$.

Assumptions (common for analysis)

- a and W are independent, zero-mean.
- W_{ij} are i.i.d. with variance $Var(W_{ij})$.
- Components of a have common variance Var(a).

Then approximately

$$\mathsf{Var}(z) \approx \mathsf{fan}_{-}\mathsf{in} \cdot \mathsf{Var}(W_{ij}) \cdot \mathsf{Var}(a).$$

With a = ReLU(z), using $\text{Var}(\text{ReLU}(z)) \approx \frac{1}{2} \, \text{Var}(z)$ for symmetric z,

$$Var(a_{next}) pprox rac{1}{2} fan_i n Var(W) Var(a).$$

To keep
$$Var(a_{next}) \approx Var(a)$$
, set $Var(W) \approx \frac{2}{fan.in}$.

He (Kaiming) Initialization

- Normal (Gaussian): $W_{ij} \sim \mathcal{N}(0, \frac{2}{\text{fan.in}})$, i.e. $\sigma = \sqrt{\frac{2}{\text{fan.in}}}$.
- Uniform: $W_{ij} \sim \mathcal{U}[-r, r]$ with $r = \sqrt{\frac{6}{\text{fan_in}}}$ (since $\text{Var}(\mathcal{U}[-r, r]) = \frac{r^2}{3}$).
- **Biases:** usually b = 0.
- fan_in for Dense: number of inputs to the layer...

Why it works: For ReLU-like activations, $Var(ReLU(z)) \approx \frac{1}{2} Var(z)$, so using $Var(W) = 2/fan_i$ keeps variance stable layer-to-layer.

Effect of He vs Random initialization

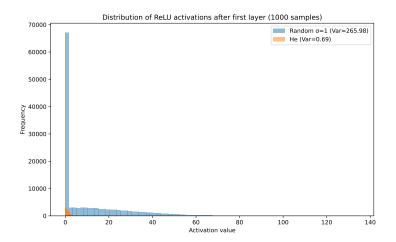


Figure: Effect of He vs Random initialization after ReLU layer.

Forward vs Backward: fan_in or fan_out?

- fan_in preserves activation variance forward. This is the standard He init for ReLU layers.
- fan_out preserves gradient variance backward. Some libraries allow a "mode" parameter.
- In practice, for MLPs/CNNs with ReLU-family, **He with fan_in** is a robust default.

Applying He Init to a Simple MNIST MLP

Example shapes:

- Input \rightarrow Hidden: 784 \rightarrow 128 $\Rightarrow \sigma = \sqrt{2/784} \approx 0.0505$
- Hidden \rightarrow Output: $128 \rightarrow 10 \quad \Rightarrow \quad \sigma = \sqrt{2/128} = 0.125$

Tip: initialize biases to zero; ensure float32; set a reproducible seed.

NumPy: Dense He Initialization

```
import numpy as np
def he_normal(shape, fan_in):
    std = np.sqrt(2.0 / fan_in)
    return np.random.normal(0.0, std, size=shape).astype(np.float32)
def he_uniform(shape, fan_in):
    bound = np.sqrt(6.0 / fan_in) \#since Var[U(-r,r)] = r^2 / 3
    return np.random.uniform(-bound, bound, size=shape)
                                     .astvpe(np.float32)
# Dense layer: W in R[hidden, in_dim]
in_dim, hidden, out_dim = 784, 128, 10
W1 = he_normal((hidden, in_dim), fan_in=in_dim)
b1 = np.zeros((hidden,), dtype=np.float32)
W2 = he\_normal((out\_dim, hidden), fan\_in=hidden)
b2 = np.zeros((out\_dim,), dtype=np.float32)
```

MNIST Checklist (ReLU MLP/CNN)

- Use **He init (fan_in)** for all ReLU-based layers.
- Biases \rightarrow 0.
- Cross-entropy loss with logits (no final activation before softmax in the loss).
- Verify training: monitor loss/accuracy; ensure neither blows up nor stalls at start.

References

 K. He, X. Zhang, S. Ren, J. Sun. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, ICCV 2015.

Thanks!

This presentation is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)

https://creativecommons.org/licenses/by/4.0/